Log
Simples example
>>> from ffit.funcs.log import Log
# Call the fit method with x and y data.
>>> fit_result = Log().fit(x, y)
# The result is a FitResult object that can be unpacked.
>>> res, res_func = fit_result
# One can combine multiple calls in one line.
>>> res = Log().fit(x, y, guess=[1, 2, 3, 4]).plot(ax).res
Log function.
f(x) = amplitude * np.log(rate*x) + offset
Random base
For function with the random base of the logarithm: $$ f(x) &= A * \log_d(bx) + A_0 - A \ &= \frac{A}{\ln(d)} * \ln(bx) + A_0 $$
One can use amplitude_at_base
method on the result to get the amplitude in random base.
Final parameters
The final parameters are given by LogParam
dataclass.
Source code in ffit/funcs/log.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
fit
fit(x, data, mask=None, guess=None, method='leastsq', maxfev=10000, **kwargs)
Fit the data using the specified fitting function.
This function returns FitResult see the documentation for more information what is possible with it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
_ARRAY
|
The independent variable. |
required |
data
|
_ARRAY
|
The dependent variable. |
required |
mask
|
Optional[Union[_ARRAY, float]]
|
The mask array or threshold for data filtering (optional). |
None
|
guess
|
Optional[Union[_T, tuple, list]]
|
The initial guess for fit parameters (optional). |
None
|
method
|
Literal['least_squares', 'leastsq', 'curve_fit']
|
The fitting method to use. Valid options are "least_squares", "leastsq", and "curve_fit" (default: "leastsq"). |
'leastsq'
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
FitResult |
FitWithErrorResult[_T]
|
The result of the fit, including the fitted parameters and the fitted function. |
Raises:
Type | Description |
---|---|
ValueError
|
If an invalid fitting method is provided. |
Source code in ffit/fit_logic.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|
async_fit
async
async_fit(x, data, mask=None, guess=None, **kwargs)
Asynchronously fits the model to the provided data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
_ARRAY
|
The independent variable data. |
required |
data
|
_ARRAY
|
The dependent variable data to fit. |
required |
mask
|
Optional[Union[_ARRAY, float]]
|
An optional mask to apply to the data. Defaults to None. |
None
|
guess
|
Optional[_T]
|
An optional initial guess for the fitting parameters. Defaults to None. |
None
|
**kwargs
|
Additional keyword arguments to pass to the fitting function. |
{}
|
Returns:
Type | Description |
---|---|
FitWithErrorResult[_T]
|
FitWithErrorResult[_T]: The result of the fitting process, including the fitted parameters and associated errors. |
Source code in ffit/fit_logic.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
guess
classmethod
guess(x, data, mask=None, guess=None, **kwargs)
Guess the initial fit parameters.
This function returns an object of the class FitResult
.
See its documentation for more information on what is possible with it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
The independent variable. |
required | |
data
|
The dependent variable. |
required | |
mask
|
Optional[Union[_ARRAY, float]]
|
The mask array or threshold for data filtering (optional). |
None
|
guess
|
Optional[_T]
|
The initial guess for the fit parameters (optional). |
None
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
FitResult |
FitResult[_T]
|
The guess, including the guess parameters and the function based on the guess. |
Examples:
>>> x = [1, 2, 3, 4, 5]
>>> data = [2, 4, 6, 8, 10]
>>> fit_guess = FitLogic.guess(x, data)
>>> fit_guess.plot()
Source code in ffit/fit_logic.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
|
bootstrapping
bootstrapping(x, data, mask=None, guess=None, method='leastsq', sampling_len=None, sampling_portion=0.75, **kwargs)
Fit the data using the specified fitting function.
This function returns FitResult see the documentation for more information what is possible with it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
_ARRAY
|
The independent variable. |
required |
data
|
_ARRAY
|
The dependent variable. |
required |
mask
|
Optional[Union[_ARRAY, float]]
|
The mask array or threshold for data filtering (optional). |
None
|
guess
|
Optional[Union[_T, tuple, list]]
|
The initial guess for fit parameters (optional). |
None
|
method
|
Literal['least_squares', 'leastsq', 'curve_fit']
|
The fitting method to use. Valid options are "least_squares", "leastsq", and "curve_fit" (default: "leastsq"). |
'leastsq'
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
FitResult |
FitWithErrorResult[_T]
|
The result of the fit, including the fitted parameters and the fitted function. |
Raises:
Type | Description |
---|---|
ValueError
|
If an invalid fitting method is provided. |
Source code in ffit/fit_logic.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|