ExpDecayingCos
Simples example
>>> from ffit.funcs.exp_decaying_cos import ExpDecayingCos
# Call the fit method with x and y data.
>>> fit_result = ExpDecayingCos().fit(x, y)
# The result is a FitResult object that can be unpacked.
>>> res, res_func = fit_result.res_and_func()
# The parameters can be accessed as attributes.
>> amplitude0 = fit_result.amplitude0
# One can combine multiple calls in one line.
>>> res = ExpDecayingCos().fit(x, y, guess=[1, 2, 3, 4]).plot(ax)
Final parameters
Exponential Decaying Cosine parameters.
Attributes:
Name | Type | Description |
---|---|---|
amplitude0 |
float
|
The absolute amplitude of the decaying cosine. |
frequency |
float
|
The frequency of the decaying cosine. |
phi0 |
float
|
The initial phase of the decaying cosine. |
offset |
float
|
The offset of the decaying cosine. |
tau |
float
|
The decay constant of the decaying cosine. |
std |
Optional[ExpDecayingCosParam]
|
The standard deviation of the parameters, if any. |
Additional attributes
omega (float): Calculates the angular frequency based on the frequency. rate (float): Calculates the rate of decay.
Source code in ffit/funcs/exp_decaying_cos.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|
Fit ExpDecayingCos function.
Function
$$ f(x) = A_0 * \cos(ω⋅x + \phi_0) * \exp(-x / τ) + A_{\text{offset}} $$
f(x) = (
amplitude0 * np.exp(-x / tau)
* np.cos(2 * np.pi * x * frequency + phi0)
+ offset
)
Final parameters
The final parameters are given by ExpDecayingCosParam
dataclass.
Source code in ffit/funcs/exp_decaying_cos.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
fit
fit(x, data, *, mask=None, guess=None, method='leastsq', maxfev=10000, **kwargs)
Fit the data using the specified fitting function.
This function returns FitResult see the documentation for more information what is possible with it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
_ARRAY
|
The independent variable. |
required |
data
|
_ARRAY
|
The dependent variable. |
required |
mask
|
Optional[Union[_ARRAY, float]]
|
The mask array or threshold for data filtering (optional). |
None
|
guess
|
Optional[Union[_T, tuple, list]]
|
The initial guess for fit parameters (optional). |
None
|
method
|
Literal['least_squares', 'leastsq', 'curve_fit']
|
The fitting method to use. Valid options are "least_squares", "leastsq", and "curve_fit" (default: "leastsq"). |
'leastsq'
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
FitResult |
_T
|
The result of the fit, including the fitted parameters and the fitted function. |
Raises:
Type | Description |
---|---|
ValueError
|
If an invalid fitting method is provided. |
Source code in ffit/fit_logic.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
async_fit
async
async_fit(x, data, *, mask=None, guess=None, method='leastsq', maxfev=10000, **kwargs)
Asynchronously fits the model to the provided data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
_ARRAY
|
The independent variable data. |
required |
data
|
_ARRAY
|
The dependent variable data to fit. |
required |
mask
|
Optional[Union[_ARRAY, float]]
|
An optional mask to apply to the data. Defaults to None. |
None
|
guess
|
Optional[_T]
|
An optional initial guess for the fitting parameters. Defaults to None. |
None
|
**kwargs
|
Additional keyword arguments to pass to the fitting function. |
{}
|
Returns:
Type | Description |
---|---|
_T
|
FitWithErrorResult[_T]: The result of the fitting process, including the fitted parameters and associated errors. |
Source code in ffit/fit_logic.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
guess
classmethod
guess(x, data, mask=None, guess=None, **kwargs)
Guess the initial fit parameters.
This function returns an object of the class FitResult
.
See its documentation for more information on what is possible with it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
The independent variable. |
required | |
data
|
The dependent variable. |
required | |
mask
|
Optional[Union[_ARRAY, float]]
|
The mask array or threshold for data filtering (optional). |
None
|
guess
|
Optional[_T]
|
The initial guess for the fit parameters (optional). |
None
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
FitResult |
_T
|
The guess, including the guess parameters and the function based on the guess. |
Examples:
>>> x = [1, 2, 3, 4, 5]
>>> data = [2, 4, 6, 8, 10]
>>> fit_guess = FitLogic.guess(x, data)
>>> fit_guess.plot()
Source code in ffit/fit_logic.py
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
|
bootstrapping
bootstrapping(x, data, mask=None, guess=None, method='leastsq', num_of_permutations=None, maxfev=_DEFAULT_MAXFEV, **kwargs)
Fit the data using the specified fitting function.
This function returns FitResult see the documentation for more information what is possible with it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
_ARRAY
|
The independent variable. |
required |
data
|
_ARRAY
|
The dependent variable. |
required |
mask
|
Optional[Union[_ARRAY, float]]
|
The mask array or threshold for data filtering (optional). |
None
|
guess
|
Optional[Union[_T, _ANY_LIST_LIKE]]
|
The initial guess for fit parameters (optional). |
None
|
method
|
Literal['least_squares', 'leastsq', 'curve_fit']
|
The fitting method to use. Valid options are "least_squares", "leastsq", and "curve_fit" (default: "leastsq"). |
'leastsq'
|
num_of_permutations
|
Optional[int]
|
The number of permutations to use for the bootstrapping. |
None
|
maxfev
|
int
|
The maximum number of function evaluations. |
_DEFAULT_MAXFEV
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
FitResult |
_T
|
The result of the fit, including the fitted parameters and the fitted function. |
Raises:
Type | Description |
---|---|
ValueError
|
If an invalid fitting method is provided. |
Source code in ffit/fit_logic.py
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
array_bootstrapping
array_bootstrapping(x, data, *, mask=None, guess=None, axis=-1, method='leastsq', maxfev=10000, num_of_permutations=None, **kwargs)
Perform array bootstrapping in parallel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
_ARRAY
|
The independent variable. |
required |
data
|
_2DARRAY
|
The dependent variable. |
required |
mask
|
Optional[Union[_ARRAY, float]]
|
The mask array or threshold for data filtering (optional). |
None
|
guess
|
Optional[Union[_T, tuple, list]]
|
The initial guess for fit parameters (optional). |
None
|
axis
|
int
|
The axis along which to perform the fit (default: -1). |
-1
|
method
|
Literal['least_squares', 'leastsq', 'curve_fit']
|
The fitting method to use (default: "leastsq"). |
'leastsq'
|
maxfev
|
int
|
Maximum number of function evaluations (default: 10000). |
10000
|
num_of_permutations
|
Optional[int]
|
Number of bootstrap iterations. |
None
|
**kwargs
|
Additional keyword arguments passed to _fit. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
FitResult |
_T
|
The result of the bootstrapping. |
Source code in ffit/fit_logic.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
|
bootstrapping2D
bootstrapping2D(x, data, mask=None, guess=None, method='leastsq', num_of_permutations=None, **kwargs)
Fit the data using the specified fitting function.
This function returns FitResult see the documentation for more information what is possible with it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
_ARRAY
|
The independent variable. |
required |
data
|
_2DARRAY
|
The 2D dependent variable (data, batches). |
required |
mask
|
Optional[Union[_ARRAY, float]]
|
The mask array or threshold for data filtering (optional). |
None
|
guess
|
Optional[Union[_T, tuple, list]]
|
The initial guess for fit parameters (optional). |
None
|
method
|
Literal['least_squares', 'leastsq', 'curve_fit']
|
The fitting method to use. Valid options are "least_squares", "leastsq", and "curve_fit" (default: "leastsq"). |
'leastsq'
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
FitResult |
_T
|
The result of the fit, including the fitted parameters and the fitted function. |
Raises:
Type | Description |
---|---|
ValueError
|
If an invalid fitting method is provided. |
Source code in ffit/fit_logic.py
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 |
|
mp_array_fit
mp_array_fit(x, data, *, mask=None, guess=None, axis=-1, method='leastsq', maxfev=10000, n_jobs=None, **kwargs)
Perform array fitting in parallel using multiprocessing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
_ARRAY
|
The independent variable. |
required |
data
|
_2DARRAY
|
The dependent variable. |
required |
mask
|
Optional[Union[_ARRAY, float]]
|
The mask array or threshold for data filtering (optional). |
None
|
guess
|
Optional[Union[_T, tuple, list]]
|
The initial guess for fit parameters (optional). |
None
|
axis
|
int
|
The axis along which to perform the fit (default: -1). |
-1
|
method
|
Literal['least_squares', 'leastsq', 'curve_fit']
|
The fitting method to use (default: "leastsq"). |
'leastsq'
|
maxfev
|
int
|
Maximum number of function evaluations (default: 10000). |
10000
|
n_jobs
|
Optional[int]
|
Number of processes to use. If None, uses cpu_count(). |
None
|
**kwargs
|
Additional keyword arguments passed to _fit. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
FitResult |
_T
|
The result of the fit. |
Source code in ffit/fit_logic.py
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 |
|